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Abstract

Despite many advances in mesh compression methods within the
past two decades, there is still no consensus about a standardized
compact mesh encoding format for 3D Web applications. In order
to facilitate the design of a future platform-independent solution,
this paper investigates the crucial trade-off between compactness of
the compressed representation and decompression time. Our case
study evaluates different encoding formats, combined with various
transmission bandwidths, using different client devices. Results in-
dicate that good compression rates, and at the same time a fast de-
compression, can be achieved by exploiting existing browser fea-
tures and by minimizing the complexity of operations that have to
be performed inside the JavaScript layer. Our findings are summa-
rized in concrete recommendations for future standards.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual Reality I.3.6 [Methodology and
Techniques]: Standards—Languages

Keywords: WebGL, Progressive Meshes, Compression, 3D For-
mats

1 Introduction

Hardware-accelerated, browser-integrated, plugin-free 3D visual-
ization has gained much attention within the last few years. The
availability of low-level graphics APIs like WebGL has lead to a
wide variety of high-level JavaScript libraries for a rapid, flexible
and convenient development of Web-based 3D graphics applica-
tions. Popular concepts range from imperative-procedural frame-
works (e.g., SpiderGL [Di Benedetto et al. 2010]) to declarative ap-
proaches based on scene graphs (e.g., X3DOM [Behr et al. 2009]).

A challenging problem which still remains in today’s Web-based
graphics APIs is the efficient transmission of 3D scene data from
Web servers to client applications. This might seem surprising, as
there has been much research dedicated to mesh compression meth-
ods within the past two decades [Peng et al. 2005; Jovanova et al.
2008; Maglo et al. 2012]. However, the wide variety of applica-
tion platforms, including mobile devices with limited CPU horse-
power, posts quite different demands on such formats than the pow-
erful CPUs of desktop machines. Since platform independence is
achieved through the use of Web technologies, including interpreted
languages like JavaScript instead of native code, this constraint be-
comes even harder. Another very important aspect is that the trade-
off between compactness of the compressed representation and de-
code time has to be reconsidered, given the increasing availability
of broadband connections. As a consequence of these open ques-
tions, and despite the large amount of different data formats being
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used among current 3D Web applications, there is still no consen-
sus about a common format for 3D content delivery on the Web,
although this is currently a major aim of important actors like the
Khronos Group [Trevett 2012].

Within this paper, we thus present a case study on mesh data for-
mats that are in use in current popular 3D graphics APIs for the
Web. Besides the very common X3D standard, our study includes
compressed and uncompressed binary formats (X3DOM BinaryGe-
ometry [Behr et al. 2012], OpenCTM [Geelnard 2009]) as well as
an innovative solution from the Google Body project [Blume et al.
2011; Chun 2012]. We also propose and evaluate a new modified
version of the OpenCTM format, which produces 25% larger files
on average, but also needs only 20-40% of the original decompres-
sion time by exploiting the GZIP compression capabilities of HTTP.
Our study compares compactness of the compressed representation
against time needed for decoding, using two different client devices
and evaluating connections with varying bandwidth. Finally, we
discuss our experimental results and give directions for further de-
velopment of mesh formats for the Web.

Our results shed a new light on the trade-off between compactness
and decompression time, and are therefore especially valuable for
application developers and researches that are interested in an effi-
cient format for compression and transmission of 3D data, relying
solely on today’s standard browser technology.

2 Mesh Transmission

The following Section 2.1 gives an overview on a comprehen-
sive selection of previous contributions, associated with Web-based
streaming of mesh data. Many mesh compression methods are
highly specialized on a certain type of input data, e.g. regularly
sampled closed manifolds, and are thus not designed to handle arbi-
trary meshes, including normal and texture information [Gumhold
and Strasser 1998; Alliez and Desbrun 2001; Valette et al. 2009].
Furthermore, an exhaustive state-of-the-art report, covering the
complete field of mesh compression methods, is clearly out of scope
for this paper. The interested reader is referred to survey papers, as
provided by Allize and Gotsman or Peng et al. [Alliez and Gotsman
2003; Peng et al. 2005]. We have decided to focus our discussion
instead on methods which are directly applicable in today’s Web
application scenarios, including mobile visualization. However, as
progressive mesh compression methods have gained much attention
within the past years as candidate technology for Web-based mesh
transmission, we have dedicated a few paragraphs to those methods
as well.

Section 2.2 presents the formats used in our case study in greater
detail, as well as the motivation for selecting them.

2.1 Related Formats

Progressive Meshes. Progressive Meshes (PMs), as originally
introduced by Hoppe [1996], provide a continuous, progressive re-
finement of a polygonal mesh during data transmission over a net-
work. The basic idea is to refine a coarse mesh on the client side,
using a stream of vertex split operations, until the original high-
resolution mesh has been reconstructed.

As many algorithms have been published in this field within the



Approach Test CPU ∆/s b/v

[Hoppe 1998] Pentium Pro (200 MHz) 172K 153
[Pajarola and Rossignac 2000] R12000 SGI O2 (300 MHz) 46K 20
[Khodakovsky et al. 2000] Pentium II Xeon (550 MHz) 32K 15
[Alliez and Desbrun 2001] Pentium III (NA) 5K 14
[Valette et al. 2009] Intel Quad Core (2.66 GHz) 33K 14
[Maglo et al. 2010] NA (2 GHz) 20K 17
[Maglo et al. 2012] Intel Core i7 (2.8 GHz) 122K 16

Table 1: Reported decode times and compression performance
(bits / vertex) for several progressive mesh compression methods.

past two decades, achieving impressive compression results and
high-quality progressive reconstructions, such methods seem ide-
ally suited for a common Web 3D format, for example by imple-
menting them as extensions of the X3D standard [Fogel et al. 2001;
Maglo et al. 2010]. Nevertheless, the surprising result illustrated in
Table 1 is that the efficient implementation of Hoppe from 1998,
using his original algorithm, still provides the fastest decompres-
sion. Note that this withstands even though the reported times were
compared, i.e. the advances in CPU technology are not taken into
account at all. Nevertheless, the compression factor between his
method and other coders differs in an order of magnitude as well.
A main reason for this trend in our opinion lies in the focus on
rate-distortion (RD) performance (i.e., the pure compression fac-
tor) within the past decade [Alliez and Desbrun 2001; Valette et al.
2009; Maglo et al. 2012; Lee et al. 2012].

Since RD performance measures the efficiency of a compression
scheme independently from any specific bandwidth or CPU power,
it does completely ignore the trade-off between download band-
width and decompression time, which has already been mentioned
in the early work of Hoppe [1998]. This trade-off is still crucial
in today’s Web-based real-time visualization scenarios, therefore
it is the main focus of this paper (see Section 3.2). A typical ex-
ample, where a complex progressive decoding method would actu-
ally slow down the application, could be the real-time inspection of
CAD data, using a fast company intranet and a tablet PC with only
limited CPU power.

PM algorithms are furthermore designed to work well with reg-
ularly sampled, closed surfaces, often delivering poor results for
meshes composed of multiple objects (e.g., the backyard scene used
in this paper). Splitting such meshes into multiple meshes is a
possible solution, but introduces additional complexity. Moreover,
most PM algorithms post specific requirements on the input data. A
general solution, however, needs to be able to easily handle various
kinds of models including non-manifold geometry in an efficient
way. Even though PM algorithms exist since more than a decade,
we were not able to find a stable implementation, capable of han-
dling models of arbitrary topology with all their attributes, like tex-
ture coordinates, colors, normals and so on. Besides, only very few
authoring tools support exporting general 3D mesh data as PMs,
maybe due to the high implementation complexity and specific de-
mands on input data. In summary, we argue that a direct application
of existing PM algorithms in current plugin-free 3D Web applica-
tions is not a approriate, because of the following reasons:

• The lack of standardized formats and tools.

• The strict requirements of PMs on input data.

• The time-consuming sequential decompression on the CPU,
which is impractical in JavaScript-based Web applications.

Web3D and Mobile Approaches. A wide variety of standards
and frameworks for Web-based and mobile 3D visualization has

emerged within the past few years. The open ISO standard X3D
provides a flexible file format and run-time architecture, using the
text-based classic VRML-style encoding, a text-based XML rep-
resentation, or a more compact binary encoding (X3DB) [Web3D
Consortium 2008]. Since X3D is not natively supported by Web
browsers, specific plug-ins have been the common solution to dis-
play X3D content. A plugin-free integration of X3D scenes into the
HTML document was first realized by Behr et al. [2009] within the
X3DOM framework, implementing a so-called polyfill layer based
on JavaScript and WebGL. With XML3D, another approach towards
declarative 3D was proposed by Sons et al. [2010]. In contrast to
X3DOM, their format proposes a new tag set, which is not based on
X3D any more. In recent versions of XML3D, mesh data can also
be externalized from the HTML document by storing it in separate
JSON files.

While text-based declarative 3D content is human-readable and
therefore easy to edit, a problem occurs with such frameworks if the
size of the models increases, as parsing text files of several hundred
megabytes completely breaks the browser performance. To han-
dle this problem, Behr et al. have discussed image-based transmis-
sion (Sequential Image Geometry) and raw binary encoding (Bina-
ryGeometry) of indices and vertex attributes, such as positions and
normals, as two possible approaches for data externalization [Behr
et al. 2012] (see also Section 2.2). For the ImageGeometry node,
16 bit vertex positions are encoded in two separate 8 bit images, en-
abling a simple progressive transmission in two steps. Nevertheless,
it requires texture access in vertex shaders, which isn’t available on
every device and also decreases the render performance.

Gobbetti et al. proposed a method which also uses image-based
mesh description format [Gobbetti et al. 2012]. In contrast to
X3DOM’s ImageGeometry, their method resamples the model data
in order to build a tight atlas parametrization of the mesh geometry.
This enables them to use the atlas images also for multi-resolution
transmission and rendering via simple mipmap operations.

Similar to X3DOM’s BinaryGeometry node, Lee et al. [2010] pro-
pose to reduce the size of binary mesh data for efficient storage and
transmission, using a straightforward local quantization scheme.
They argue that geometry compression for mobile graphics requires
a careful choice of the compression method in order to maintain in-
teractive decompression rates.

Comparing text-based (VRML/XML) and binary (X3DB) encod-
ings for X3D files, Stocker and Schickel [2011] demonstrated the
advantages of binary formats considering both parsing time and es-
pecially transfer time, decreasing the file size to 10% of the orig-
inal uncompressed textual representation and 50% compared to a
gzipped equivalent. Further application of GZIP on top of their bi-
nary encoding did not show significant compression results. They
used a custom viewer, which was implemented as a native browser
plug-in.

While the XML-based COLLADA format provides a generalized
way for 3D content description, making it easy to exchange as-
sets between different authoring tools, it has not been originally
designed for the use with JavaScript and WebGL. To bridge this
gap, the COLLADA2JSON project aims at developing a JSON-
based format for efficient decoding and transmission within current
Web 3D environments, resulting in the WebGL transmission for-
mat glTF [Robinet et al. 2013; Trevett 2012]. Similar to X3DOM’s
BinaryGeometry (but based on JSON instead of XML), glTF is sep-
arating lightweight, textual data description from the actual geom-
etry data and connectivity data, which are stored in external binary
containers.

The SpiderGL framework [Di Benedetto et al. 2010], which is based
on JavaScript and WebGL, is able to load 3D model data in the



Figure 1: Textured test models. Top row: regularly sampled
scanned artifacts. Bottom row: irregularly sampled game models.

open COLLADA format [Arnaud and Barnes 2006]. In addition to
that, there are currently ongoing efforts to combine SpiderGL with
Nexus1 for out-of-core multi-resolution visualization. Likewise,
Rodriguez et al. [Rodriguez et al. 2012] recently presented a mixed
client-server architecture, where an intelligent server prepares and
delivers large point clouds in such a way that even a mobile client
can display the data at interactive frame rates. However, such ap-
proaches require a special infrastructure with dedicated servers.

Using the Three.js framework [Three.js 2010], it was demonstrated
that the OpenCTM mesh format (see Sec. 2.2) can be utilized in
a Web-based context using a JavaScript implementation [Mellado
2012]. The framework also supports loading JSON and COLLADA
files as well as the WebGL-Loader format (see Section 2.2). Nev-
ertheless, a comparative evaluation of decompression performance,
as provided in our case-study, was missing so far.

2.2 Evaluated Formats

Standard X3D. Encoding 3D mesh data directly in the text-based
X3D format has several advantages. First, X3D is an ISO ratified,
open standard, supported by many different plugins, and also by the
plugin-free X3DOM framework. Already in use for over 10 years,
chances are high that X3D versions of mesh data can be obtained
with relatively little effort using existing tools and converters. A
drawback of the text-based representation is that the corresponding
files tend to become pretty large. This can get very time-consuming,
especially in a Web-based context, when browsers have to parse the
whole XML-based mesh data representation [Behr et al. 2012]. On
the contrary, the textual representation is read by optimized, built-
in browser functionality, and the JavaScript-based operations on the
client side are kept minimal. In addition to that, the size of the text
files can be reduced significantly by applying HTTP’s GZIP com-
pression (which utilizes LZ77 along with Huffmann encoding). Fi-
nally, in terms of file size and compression performance, an XML-
encoded X3D representation is expected to behave pretty similar

1Compare http://vcg.isti.cnr.it/nexus/

to a JSON-based format, as the payload of the file is unstructured
mesh data, which looks the same in both formats. Therefore, we
chose to evaluate the XML encoding of the X3D format within our
case study, being a representative text-based mesh data format.

X3DOM BinaryGeometry (BG). To overcome the main draw-
backs of using a text-based X3D representation in a Web-based
context, Behr et al. have proposed a binary encoding format for the
X3DOM framework, entitled BinaryGeometry [Behr et al. 2012].
The general idea of externalizing unstructured mesh data using bi-
nary containers, along with a lightweight, structured description in
a human-readable format, was enabled by the recent TypedArray
specification. This allows to download and manipulate binary data
directly in a Web page using JavaScript. The idea was also adopted
by the recent glTF proposal, with the small difference that it uses
JSON for the structured information instead of XML. Once the bi-
nary data chunks have been downloaded from the server, they can
be transferred directly to GPU memory. This is a huge advantage in
contrast to compressed binary formats, where some decoding oper-
ations need to be performed inside the JavaScript layer before the
upload to the GPU can be performed. Nevertheless, this direct GPU
upload comes at the cost of massively limiting the compression ca-
pabilities. The X3DOM BinaryGeometry allows data reduction by
supporting indexed triangle strips, which have to be converted from
the triangle data during preprocessing. The format also allows to
reduce the size of the binary containers by using a 16 bit integer
quantization. This introduces an additional translation and scale
operation to obtain correctly transformed floating-point positions
during rendering, which can, however, be realized efficiently by
adapting the corresponding Model-View Matrix [Lee et al. 2010].
Within our experiments, we have made use of both optimizations,
stripification and quantization. Because of the interesting property
that it does not involve any client-side decode operations, we chose
to evaluate the X3DOM BinaryGeometry format as a representative
format for uncompressed binary mesh data transmission.

OpenCTM. OpenCTM is an open binary format for 3D mesh
compression [Geelnard 2009]. It has the great benefit of offering
good compression rates, while still providing a relatively fast de-
compression for native desktop applications. In contrast to formats
like VRML/X3D, OpenCTM is solely concerned with encoding
mesh data and not encoding any scene description information, like
materials, transformations or interactive aspects. From the three
available modes of OpenCTM (RAW, MG1 and MG2), we have
used the most compact MG2 encoding throughout our experiments.
The compact binary encoding mainly builts on entropy reduction
and LZMA entropy coding, which combines LZ77 with Markov
chains. To reduce the size of the compressed connectivity data, the
indices representing the triangles are sorted by the smallest index
of each triangle. For efficient LZMA compression, the resulting
list is then delta-coded with a very simple scheme which, however,
includes a case differentiation during coding and decoding. The
model is furthermore subdivided into several uniform cells, and the
position of each vertex relative to the corresponding cell origin is
computed. The resulting cell-space coordinates are then sorted by
their x-coordinate and then delta-encoded. Normals and texture
coordinates are delta-encoded as well. As a result, entropy is re-
duced significantly and LZMA coding can efficiently compress the
data. Moreover, vertex data can be stored in a quantized integer for-
mat, resulting in good compression rates which are expected to be
superior to the simple quantized binary storage formats, like glTF
or X3DOM’s BinaryGeometry. However, the OpenCTM format
is not supported by any browser natively, nor are there any plug-
ins available. Therefore, platform-independent Web applications
using OpenCTM will first have to decode the compressed data in-

http://vcg.isti.cnr.it/nexus/


Model # Triangles # Vertices X3D BG CTM-G Chun CTM

RAW GZIP RAW GZIP RAW GZIP RAW GZIP RAW GZIP

Backyard 4,615 2,625 240 71 79 46 147 43 62 43 31 31
Pharao 16,866 8,437 618 227 185 151 495 116 149 111 81 81
Tractor 49,480 27,251 2,296 617 646 431 1,539 361 506 301 259 259
Bird 184,472 69,948 7,330 2,454 1,958 1,647 5,465 1,197 1,453 1,020 947 948

Table 2: Size of test models, given in KB. Some formats are build on additional GZIP compression during transmission, as specified in HTTP.
Texture images are sent separately for all formats, hence their size has been neglected.

side the JavaScript layer before being able to upload it to the GPU
for rendering. It is therefore an interesting format to investigate
the trade-off between compactness of the compressed representa-
tion and decode time. Within our case study, OpenCTM is the only
compressed binary mesh data format.

WebGL-Loader (Chun). The Google Body project, which was
aiming at a browser-based inspection of human anatomy, resulted
in WebGL-Loader, a minimalistic JavaScript library for compact
3D mesh transmission [Blume et al. 2011; Chun 2011; Chun 2012].
The latest version performs a vertex cache optimization on the in-
dex list [Forsyth 2006]. After an additional optimization for the pre-
transform vertex cache, indices are then delta-coded with respect to
the current high watermark. Instead of a simple delta encoding, a
more advanced parallelogram prediction is used for the attributes.
It predicts the next vertex position by constructing a parallelogram
with the last three vertices of the triangle strip. The normals are
predicted using the cross product of the edges of every triangle. Fi-
nally, all the attributes are quantized to less than 16 bit and stored in
a UTF-8 file. The UTF-8 file format is a good alternative to binary
formats because it can be parsed very quickly with JavaScript, while
also providing variable-length encoding. The sorting and delta en-
coding of the algorithm achieves a comparatively good compres-
sion and, combined with the native GZIP implementation of the
browser, realizes fast decompression without the need for additional
plug-ins. Because of the interesting property of building on browser
features like UTF-8 and GZIP, the WebGL-Loader format has been
included in our experimental comparison.

3 Case Study

Within this section, we describe our case study on compact delivery
of 3D Web Content. We have evaluated several encoding methods
in terms of compression performance and decompression time, us-
ing a desktop machine (i7 CPU, 3.4 GHz) as well as an iPad 3
tablet.

Figure 1 shows the test models used in our experiments. The
bird model and the pharao model (left side) are real-world artifacts
which have been regularly sampled by two different scanning de-
vices. In contrast, the backyard scene and the tractor model are
carefully optimized game models, where the polygon count has
been reduced to a minimum yet preserving all important features.
All models are textured, and per-vertex normals have been stored
along with the mesh data.

3.1 Compression Rate

Table 2 shows a comparison of the file sizes of our test models,
using the different encoding formats. As today’s browsers sup-
port the HTTP option to compress files for transmission using
GZIP, we have included GZIP-compressed variants for each en-
coding method. GZIP uses LZ77 to eliminate repeated character

Model X3D BG CTM-G Chun * CTM

Backyard 25 0 14 2 49
Pharao 77 0 24 4 127
Tractor 248 0 60 8 353
Bird 880 0 190 25 1139

Model X3D BG CTM-G Chun * CTM

Backyard 288 0 452 57 1,455
Pharao 835 0 1,563 144 4,541
Tractor 3,008 0 4,760 470 14,006
Bird 11,055 0 16,863 1,464 47,786

Table 3: Decompression / parsing times (ms), measured on a desk-
top PC (top) and on an iPad 3 tablet (bottom).
* The WebGL-Loader format also offers progressive decoding dur-
ing the download, which was not exploited here as we show pure
decode time without any assumptions about download bandwidth.

sequences, and it utilizes Huffman encoding for the remaining se-
quence.

We notice that file sizes differ quite drastically among the various
file formats. As expected, the text-based X3D format produces the
largest files. However, compressed with GZIP they are roughly a
third of their original size. The smallest files are generated using
the OpenCTM format, which already uses LZMA compression and
therefore does not benefit at all from additional GZIP compression.
The X3DOM BinaryGeometry (BG) and the WebGL-Loader en-
coding are ranked between those two extremes and provide files
of approximately the same sizes. However, the WebGL-Loader
strongly benefits from GZIP compression and is therefore able to
offer superior compression rates. Still, all evaluated formats are sig-
nificantly less compact than the advanced PM formats referenced in
Table 1, as can be seen in Table 4.

As expected, the JavaScript-based decoding of the LZMA-
compressed OpenCTM format in most cases took a lot of time (see
Section 3.2), so we decided to replace the final LZMA part of the
OpenCTM encoder with server-side GZIP compression over HTTP.
Results are included in Table 2, labeled CTM-G. In line with expec-
tations, this leads to less impressive compression rates. Resulting
files are, in the GZIP-compressed form, still more compact than
those using the X3DOM BinaryGeometry encoding, but less com-
pact than the ones using the GZIP-compressed WebGL-Loader for-
mat. However the result is expected to decode much faster after
the JavaScript-based LZMA decompression step has been removed
(see Section 3.2).



500 1000 2000 4000 8000 16000 32000 64000
20

200

2000

20000

X3D

BG

CTM-G

Chun

CTM

Bandwidth (kbit/s)

S
ta

rt
u

p
 T

im
e

 (
m

s
)

500 1000 2000 4000 8000 16000 32000 64000
20

200

2000

20000

Bandwidth (kbit/s)

S
ta

rt
u

p
 T

im
e

 (
m

s
)

Figure 2: Combined download and decode time (tractor model). Left: using a desktop PC. Right: using an iPad 3.

X3D BG CTM-G Chun CTM

∆/s 203K NA 707K 5,022K 132K
b/v 223 149 120 110 83

Table 4: Average compression and decompression performances,
using a JavaScript-based implementation on a desktop machine.

3.2 Transmission and Decompression Speed

Table 3 summarizes the times needed for decompressing the test
data on the desktop machine and on the iPad 3.

The X3DOM BinaryGeometry (BG) format does not employ any
client-side parsing or decompression of the actual mesh data. As
the downloaded buffers are directly pushed to the GPU without
any further client-based processing time, decompression time is
indicated as zero for all cases. In comparison with the other for-
mats, the fast decompression of the WebGL-Loader format offers
the shortest decode time in all cases. Even on the iPad, decode times
stay relatively moderate. Additionally, it has to be mentioned that
the WebGL-Loader offers to decode the data progressively during
download. As the overall decode time is depending on the transmis-
sion bandwidth, we decided to show plain decode time in Table 3,
and we note that WebGL-Loader is able to potentially provide even
slightly better results in practice.

In contrast to the fast BinaryGeometry and WebGL-Loader for-
mats, all other methods perform poorly when decoding larger mod-
els on the iPad. Especially the JavaScript implementation of the
OpenCTM format using LZMA compression is not feasible in prac-
tice, even for moderately-sized meshes, due to decode times of mul-
tiple seconds. Our OpenCTM variant relying on GZIP (CTM-G)
performs significantly better, especially on the desktop machine.
Nevertheless, it is outperformed by the text-based X3D format on
the iPad 3.

Figure 2 illustrates combined download and decode times for vari-
ous transmission bandwidths. Since the decode times of the differ-
ent test formats are varying in more than an order of magnitude, we
decided to use a logarithmic scale for visualization purposes.

As expected, the choice of an ”ideal” format also depends on the
available bandwidth. Nevertheless, we found some formats being
more suited for common use than others. The WebGL-Loader for-

mat provides very good results on both devices and throughout all
bandwidths, as it provides a compact encoding and at the same time
fast decompression. The BinaryGeometry approach works very
well on the iPad 3, as the data does not need to be decoded on
the client’s CPU. On the desktop machine it still performs well, al-
though being outperformed by the WebGL-Loader format due to its
limited compression capabilities.

The excellent compression rate of the OpenCTM format only pays
off at small download bandwidths, using a relatively powerful desk-
top machine. Our GZIP-compressed variant, CTM-G, provides bet-
ter results. On the desktop machine, it is superior to the text-based
X3D encoding, whereas this relation is inverted on the iPad, as soon
as a transmission bandwidth of more than 2 Mbit/s is available.

4 Design Discussion

Basically we can identify two stages necessary to transfer and
present a 3D model to a user’s client. In sequential orders these
are Download Stage and Decode Stage. Generally both of them
have to be taken into account, when measuring the performance of
a compression algorithm2. The average global connection speed is
currently about 2.8 Mbps [Akamai Technologies 2012], also high-
lighted with red lines in Fig. 2. This means that, for most users, the
connection speed is still the limiting factor. However, for devices
with limited processing power like mobile devices, the decoding
time of complex compressed formats like OpenCTM can often ex-
ceed the download time. This is shown in Figure 3.

The results imply that, for users with very fast connections, one
should try to minimize the decode time. This can be achieved by
avoiding additional compression and transferring the mesh data di-
rectly as binary data, like X3DOM’s Binary Geometry or glTF.
Otherwise the trade-off between a fast download time achieved
by a compact compression and the necessary decoding time has
to be evaluated. When using a desktop PC, the OpenCTM for-
mat performs best for small bandwidths below 1 Mbit/s due to
its high compression rates. However, using an iPad3 it is slower
than all the other measured formats. Depending on the bandwidth,
X3DOM’s BinaryGeometry or the WebGL-Loader format performs
best. Overall, the latter seems to offer a good compromise between
compactness and decompression performance.

2In some application scenarios, even the encoding phase may be time-
critical



Figure 3: Download and decode time (ms) for Bird model at fixed connection speed of 2.8 Mbps on a desktop PC (left) and an iPad 3 (right).
Note that those measurements don’t include the network connection overhead.

Finally, another aspect not yet taken into account is the rendering
speed. Some approaches like the X3DOM Image Geometry rely on
additional decoding steps performed during rendering [Behr et al.
2012]. However, taking into account the potentially very limited
GPU power of mobile devices, we think that a general 3D mesh
format for the Web should not directly affect the rendering pipeline.

All things considered, our recommendations for a possible future
standard format for 3D mesh data delivery on the web, e.g. for the
next generation of X3D (version 4.0) or for further development of
glTF, are as follows:

• Mesh data which can directly be mapped to GPU structures,
like vertex positions and indices, should be stored in binary
chunks. Those chunks should be separated from the structured
mesh information (e.g. materials, transformations) and - in an
ideal case - directly be uploaded to the GPU.

• Depending on the available bandwidth budget, as well as on
the expected processing power of the client, a corresponding
profile should be available to minimize the overall transmis-
sion time. Concretely, a mobile profile could e.g. optimizes
for decoding speed instead of file size.

• For most use cases, mesh data can be stored in a quantized
form, e.g. by using 16 bit attributes, without a significant loss
of quality.

• Compression algorithm should be carefully designed with re-
spect to the additional decode time, especially for mobile plat-
forms. A good strategy is to design a format in such a way that
it exploits browser’s existing compression capabilities, for ex-
ample by using delta encoding along with GZIP.

5 Conclusion and Future Work

Within this paper, we have compared several mesh encoding for-
mats in terms of their compactness and decompression time needed
by a Web browser. We have performed our tests using two different
client devices, a desktop PC and an iPad 3 tablet.

Our experiments have revealed the trade-off between compactness
of the encoded data and decode time to be crucial for the design of
a platform-independent 3D mesh encoding format for the Web. In
order to meet the various requirements arising from this trade-off,
we propose to provide different encoding profiles, as the choice of
the best-suited format strongly depends on the bandwidth budget,
as well as on the target device. Those could be a mobile profile,
which tries to avoid additional decoding, or a desktop profile, ex-
ploiting browser’s built-in compression capabilities. Considering
the potential speedup of future devices and JavaScript (e.g., through
asm.js [Herman et al. 2013]), another profile could also provide
more sophisticated encoders to achieve far better compression rates.

For the future, we would like to investigate simple methods for pro-
gressive transmission, which still perform good in terms of com-
pactness and decompression performance. We also would like to
include encoding times in our evaluation, as this is another impor-
tant aspect, especially in the context of cloud-based applications,
where each second of CPU usage has to be paid.
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und Texturen für die Verwendung in WebGL. Diploma thesis, TU
Dresden, Germany.

WEB3D CONSORTIUM, 2008. X3D specification. http:
//www.web3d.org/realtime-3d/specification/
current.

http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html/
http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html/
http://openctm.sourceforge.net/
http://asmjs.org/spec/latest/
http://code.google.com/p/js-openctm/
https://github.com/KhronosGroup/collada2json/wiki/glTF
https://github.com/KhronosGroup/collada2json/wiki/glTF
http://threejs.org/
http://threejs.org/
http://www.web3d.org/realtime-3d/specification/current
http://www.web3d.org/realtime-3d/specification/current
http://www.web3d.org/realtime-3d/specification/current

